
Midterm Exam Calculus 2

18 March 2021, 9:00-11:00

The midterm exam consists of 4 problems. You have 120 minutes to answer
the questions. In addition you have 15 minutes to scan and upload your
solutions to Nestor. Upload your solutions in a single file. For the filename,
use the format Lastname Studentnumber Midterm. You can achieve 100 points
which includes a bonus of 10 points.

1. [5+5+10=20 Points]

Let f : R2 → R be defined as

f(x, y) =

{
x3−y3
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
.

(a) Is f continuous at (x, y) = (0, 0)? Justify your answer.

(b) Let u = v i + w j ∈ R2 be a unit vector, i.e. v2 + w2 = 1. Determine the
directional derivative Duf(0, 0).

(c) Use the definition of differentiability to determine whether f is differentiable at
(0, 0).

2. [10+5+10=25 Points]

Consider the curve parametrized by r : [0, π/2]→ R3 with

r(t) = cos3 t i + sin3 t j + (cos2 t− sin2 t) k.

(a) Determine the parametrization by arc length. You may use that d
dt

sin2 t =

− d
dt

cos2 t = 2 sin t cos t.

(b) For each point on the curve, determine a unit tangent vector.

(c) At each point on the curve, determine the curvature of the curve.

— please turn over —



3. [5+10+10=25 Points]

Let S be the ellipsoid in R3 defined by x2 + 2y2 + 3z2 = 6.

(a) Compute the tangent plane of S at the point (x0, y0, z0) = (1, 1, 1).

(b) Use the Implicit Function Theorem to show that near the point (x0, y0, z0) =
(1, 1, 1), the ellipsoid S can be considered to be the graph of a function f of x
and y. Compute the partial derivatives of f with respect to x and y and show
that the tangent plane found in (a) coincides with the graph of the linearization
of f at (x0, y0) = (1, 1).

(c) Use the method of Lagrange multipliers to determine the points on S where
g(x, y, z) = xy2z3 has maxima and minima, respectively.

4. [20 Points]

Let D = {(x, y) ∈ R2|x2 + y2 ≤ 4, y ≥ 0} and ∂D be the boundary of D oriented
in the counterclockwise direction. For the vector field F : R2 → R2, (x, y) 7→
P (x, y) i +Q(x, y) j with P (x, y) = 2y and Q(x, y) = x, verify

ˆ
∂D

Pdx+Qdy =

¨
D

(
∂Q

∂x
− ∂P

∂y

)
dA

by computing both sides of the equality. You may use that
´

cos2 t dt = 1
2
(t +

sin t cos t) and
´

sin2 t dt = 1
2
(t− sin t cos t).



Solutions

1. (a) Using polar coordiantes (x, y) = (r cos θ, r sin θ) we get for r > 0,

f(r cos θ, r sin θ) =
r3 cos3 θ − r3 sin3 θ

r2 cos2 θ + r2 sin2 θ
= r(cos3 θ − sin3 θ)

which goes to 0 = f(0, 0) for r → 0. Hence f is continuous at (0, 0).

(b) By definition

Duf(0, 0) = lim
t→0

f(tv, tw)− f(0, 0)

t

= lim
t→0

t3v3−t3w3

t2v2+t2w2 − 0

t
= lim

t→0
v3 − w3

= v3 − w3.

(c) Choosing u = (1, 0) in part (b) we get fx(0, 0) = 1 and similarly choosing
u = (0, 1) we get fy(0, 0) = −1. The linearization of f at (0, 0) hence is

L(x, y) = f(0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y − 0) = x− y.

For the differentiability of f at (0, 0) we need to study the limit of

f(x, y)− L(x, y)

‖(x, y)‖
for (x, y)→ (0, 0). For (x, y) 6= (0, 0) we have

f(x, y)− L(x, y)

‖(x, y)‖
=

x3−y3
x2+y2

−(x− y)

(x2 + y2)1/2
=
x3 − y3 − (x− y)(x2 + y2)

(x2 + y2)3/2
.

Using polar coordinates we get for r > 0,

x3 − y3 − (x− y)(x2 + y2)

(x2 + y2)1/2
=

r3 cos3 θ − r3 sin3 θ − (r cos θ − r sin θ)(r2 cos2 θ + r2 sin2 θ)

(r2 cos2 θ + r2 sin2 θ)3/2

= cos3 θ − sin3 θ − (cos θ − sin θ)

which for θ = π/4 gives
(

1√
2

)3
−
(

1√
2

)3
−
(

1√
2
− 1√

2

)
= 0 and for θ = −π/4

gives
(

1√
2

)3
+
(

1√
2

)3
−
(

1√
2

+ 1√
2

)
= − 1√

2
and hence has no limit for r → 0.

We conclude that f is not differentiable at (0, 0).

2. (a) The tangent vector

r′(t) = −3 cos2 t sin t i + 3 sin2 t cos t j + (−2 cos t sin t− 2 sin t cos t) k

= −3 cos2 t sin t i + 3 sin2 t cos t j− 4 cos t sin tk

has length

‖r′(t)‖ =
(
9 cos4 t sin2 t+ 9 sin4 t cos2 t+ 16 cos2 t sin2 t

)1/2
=

(
cos2 t sin2 t

(
9(cos2 t+ sin2 t) + 16

)1/2
= cos t sin t

(
25
)1/2

= 5 cos t sin t,



where we used that cos t and sin t are non-negative for t ∈ [0, π/2]. The arc
length is hence

s(t) =

ˆ t

0

‖r′(τ)‖ dτ = 5

ˆ t

0

cos τ sin τ dτ =
5

2
sin2(τ)

∣∣τ=t
τ=0

=
5

2
sin2 t =

5

2
(1−cos2 t).

So sin2 t = 2
5
s and cos2 = 1 − 2

5
s. The parametrization by arc length is thus

given by

r̃(s) = r(t(s)) = ((1− 2

5
s)3/2 i + (

2

5
s)3/2 j + (1− 4

5
s) k

with s ∈ [s(0), s(π/2)] = [0, 5/2].

(b) The unit tangent vector at the point r̃(s), s ∈ [0, 5/2], is given by

T(s) =
dr̃(s)

ds
= −3

5

(
1− 2

5
s

)1/2

i +
3

5

(
2

5
s

)1/2

j− 4

5
k

which agrees with

1

‖r′(t)‖
r′(t) =

1

5 cos t sin t

(
−3 cos2 t sin t i + 3 sin2 t cos t j− 4 cos t sin tk

)
= −3

5
cos t i +

3

5
sin t j− 4

5
k (1)

when substituting sin2 t = 2
5
s and cos2 = 1− 2

5
s.

(c) The curvature at the point r̃(s), s ∈ [0, 5/2], is given by

κ(s) =

∥∥∥∥dT(s)

ds

∥∥∥∥ =

∥∥∥∥∥ d

ds

(
−3

5

(
1− 2

5
s

)1/2

i +
3

5

(
2

5
s

)1/2

j− 4

5
k

)∥∥∥∥∥
=

∥∥∥∥∥−3

5

(
−2

5

)
1

2

(
1− 2

5
s

)−1/2
i +

3

5

2

5

1

2

(
2

5
s

)−1/2
j + 0 k

∥∥∥∥∥
=

3

25

((
1− 2

5
s
)−1

+
(2

5
s
)−1)1/2

= . . .

=
3

5

(
1

10s− 4s2

)1/2

.

Differentiating (1) with respect to t and dividing by ‖r′(t)‖ which by the chain
rule corresponds to differentiating with s gives

1

5 cos t sin t

(
9

25
sin2 t+

9

25
cos2 t

)1/2

=
3

25 cos t sin t

which agrees with the κ above when substituting sin2 t = 2
5
s and cos2 = 1− 2

5
s.

3. (a) Let F (x, y, z) = x2 + 2y2 + 3z2. Then the ellipsoid S is given by the equation
F (x, y, z) = 6. The gradient of F is ∇F (x, y, z) = 2x i + 4y j + 6z k and is
normal to S at (x, y, z) ∈ S. The tangent plane at (x0, y0, z0) ∈ S is given by
the equation

∇F (x0, y0, z0) · ((x− x0) i + (y − y0) j + (z − z0) k) = 0



i.e.
2x0(x− x0) + 4y0(y − y0) + 6z0(z − z0) = 0.

For (x0, y0, z0) = (1, 1, 1) this gives

x+ 2y + 3z = 6. (2)

(b) For F in part (a), we have

∂F

∂z
(x0, y0, z0) = 6z0 = 6 6= 0 .

By the Implicit Function Theorem S is near (x0, y0, z0) = (1, 1, 1) locally the
graph of a function f : (x, y) 7→ z = f(x, y). The implicit function f has partial
derivatives at (x0, y0) = (1, 1) given by

∂f

∂x
(x0, y0) = −

∂F
∂x

(x0, y0, z0)
∂F
∂z

(x0, y0, z0)
= −2x0

6z0
= −1

3

and
∂f

∂y
(x0, y0) = −

∂F
∂y

(x0, y0, z0)
∂F
∂z

(x0, y0, z0)
= −4y0

6z0
= −2

3
.

The linearization of f at (x0, y0) = (1, 1) is given by

L(x, y) = f(1, 1) + fx(1, 1)(x− 1) + fy(1, 1)(y − 1)

= 1− 1

3
(x− 1)− 2

3
(y − 1)

= 2− 1

3
x− 2

3
y.

The graph of L is given by the equation L(x, y) = z which agrees with (2).

(c) Let F (x, y, z) = x2 + 2y2 + 3z2 and g(x, y, z) = xy2z3. A point (x, y, z) being a
critical point of g restricted to the ellipsoid F (x, y, z) = 6 is equivalent to the
existence of a Lagrange multiplier λ ∈ R such that λ∇F (x, y, z) = ∇g(x, y, z).
Together with the constraint F (x, y, z) = 6 this gives the following four scalar
equations:

λFx(x, y, z) = gx(x, y, z),
λFy(x, y, z) = gy(x, y, z),
λFz(x, y, z) = gz(x, y, z),

x2 + 2y2 + 3z2 = 6

i.e.
2λx = y2z3,
4λy = 2xyz3,
6λz = 3xy2z2,

x2 + 2y2 + 3z2 = 6.

(3)

For x = 0, y = 0 or z = 0, we have g(x, y, z) = 0. On the other hand g(1, 1, 1) =
1 > 0 and g(−1, 1, 1) = −1 < 0. So the maxima and minima cannot have x = 0,
y = 0 or z = 0 and we can exclude such points from the solutions of (3). Then
the first three equations of (3) yield

y2z3

x
= xz3 = xy2z.



Hence y = x2 and z2 = y2 = x2. Filling this into F (x, y, z) = 6 gives x2 + 2x2 +
3x2 = 6x2 = 6, i.e. x2 = 1 and similarly y2 = z2 = 1. For (x, y, z) = (1,±1, 1)
and (x, y, z) = (−1,±1,−1), g(x, y, z) = 1 and for (x, y, z) = (−1,±1, 1) and
(x, y, z) = (1,±1,−1), g(x, y, z) = −1. By the Weierstrass Extreme Value The-
orem these points are thus maxima and minima, respectively.

4. We first evaluate the left side of the equation. The boundary ∂D is piecewise smooth
and consists of the smooth pieces parametrized by

r(t) = (2 cos t, 2 sin t) =: (x(t), y(t)), t ∈ [0, π]

and
r̃(t) = (t, 0) =: (x̃(t), ỹ(t)), t ∈ [−2, 2],

respectively. Hence

˛
∂D

P dx+Q dy =

ˆ π

0

F (r(t)) · r′(t) dt+

ˆ 2

−2
F (r̃(t)) · r̃′(t) dt

=

ˆ π

0

(P (r(t))x′(t) +Q(r(t))y′(t)) dt

+

ˆ 2

−2
(P (r̃(t))x̃′(t) +Q(r̃(t))ỹ′(t)) dt

=

ˆ π

0

(2 · 2 sin t · (−2 sin t) + 2 cos t 2 cos t) dt

+

ˆ 2

−2
(0 · 1 + t · 0) dt

=

ˆ π

0

(
−8 sin2 t+ 4 cos2 t

)
dt

=

ˆ π

0

(
−8 + 8 cos2 t+ 4 cos2 t

)
dt

=

ˆ π

0

(
12 cos2 t− 8

)
dt

=
12

2
(cos t sin t+ t)− 8t

∣∣∣∣t=π
t=0

= −2t|t=πt=0

= −2π.

For the right side of the equality we have
¨
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

¨
D

(1− 2) dA

= −area of D

= −1

2
π22

= −2π

which agrees with the left side of the equality.


