Midterm Exam Calculus 2

18 March 2021, 9:00-11:00

The midterm exam consists of 4 problems. You have 120 minutes to answer the questions. In addition you have 15 minutes to scan and upload your solutions to Nestor. Upload your solutions in a single file. For the filename, use the format Lastname_Studentnumber_Midterm. You can achieve 100 points which includes a bonus of 10 points.

1. $[5+5+10=20$ Points $]$

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{3}-y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array} .\right.
$$

(a) Is f continuous at $(x, y)=(0,0)$? Justify your answer.
(b) Let $\boldsymbol{u}=v \mathbf{i}+w \mathbf{j} \in \mathbb{R}^{2}$ be a unit vector, i.e. $v^{2}+w^{2}=1$. Determine the directional derivative $D_{u} f(0,0)$.
(c) Use the definition of differentiability to determine whether f is differentiable at $(0,0)$.
2. $[\mathbf{1 0}+5+10=\mathbf{2 5}$ Points]

Consider the curve parametrized by $\mathbf{r}:[0, \pi / 2] \rightarrow \mathbb{R}^{3}$ with

$$
\mathbf{r}(t)=\cos ^{3} t \mathbf{i}+\sin ^{3} t \mathbf{j}+\left(\cos ^{2} t-\sin ^{2} t\right) \mathbf{k}
$$

(a) Determine the parametrization by arc length. You may use that $\frac{\mathrm{d}}{\mathrm{d} t} \sin ^{2} t=$ $-\frac{\mathrm{d}}{\mathrm{d} t} \cos ^{2} t=2 \sin t \cos t$.
(b) For each point on the curve, determine a unit tangent vector.
(c) At each point on the curve, determine the curvature of the curve.
3. $[5+10+10=\mathbf{2 5}$ Points $]$

Let S be the ellipsoid in \mathbb{R}^{3} defined by $x^{2}+2 y^{2}+3 z^{2}=6$.
(a) Compute the tangent plane of S at the point $\left(x_{0}, y_{0}, z_{0}\right)=(1,1,1)$.
(b) Use the Implicit Function Theorem to show that near the point $\left(x_{0}, y_{0}, z_{0}\right)=$ $(1,1,1)$, the ellipsoid S can be considered to be the graph of a function f of x and y. Compute the partial derivatives of f with respect to x and y and show that the tangent plane found in (a) coincides with the graph of the linearization of f at $\left(x_{0}, y_{0}\right)=(1,1)$.
(c) Use the method of Lagrange multipliers to determine the points on S where $g(x, y, z)=x y^{2} z^{3}$ has maxima and minima, respectively.

4. [20 Points]

Let $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 4, y \geq 0\right\}$ and ∂D be the boundary of D oriented in the counterclockwise direction. For the vector field $\mathbf{F}: \mathbb{R}^{2} \rightarrow R^{2},(x, y) \mapsto$ $P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ with $P(x, y)=2 y$ and $Q(x, y)=x$, verify

$$
\int_{\partial D} P \mathrm{~d} x+Q \mathrm{~d} y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A
$$

by computing both sides of the equality. You may use that $\int \cos ^{2} t \mathrm{~d} t=\frac{1}{2}(t+$ $\sin t \cos t)$ and $\int \sin ^{2} t \mathrm{~d} t=\frac{1}{2}(t-\sin t \cos t)$.

Solutions

1. (a) Using polar coordiantes $(x, y)=(r \cos \theta, r \sin \theta)$ we get for $r>0$,

$$
f(r \cos \theta, r \sin \theta)=\frac{r^{3} \cos ^{3} \theta-r^{3} \sin ^{3} \theta}{r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta}=r\left(\cos ^{3} \theta-\sin ^{3} \theta\right)
$$

which goes to $0=f(0,0)$ for $r \rightarrow 0$. Hence f is continuous at $(0,0)$.
(b) By definition

$$
\begin{aligned}
D_{u} f(0,0) & =\lim _{t \rightarrow 0} \frac{f(t v, t w)-f(0,0)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\frac{t^{3} v^{3}-t^{3} w^{3}}{t^{2} v^{2}+t^{2} w^{2}}-0}{t} \\
& =\lim _{t \rightarrow 0} v^{3}-w^{3} \\
& =v^{3}-w^{3} .
\end{aligned}
$$

(c) Choosing $\boldsymbol{u}=(1,0)$ in part (b) we get $f_{x}(0,0)=1$ and similarly choosing $\boldsymbol{u}=(0,1)$ we get $f_{y}(0,0)=-1$. The linearization of f at $(0,0)$ hence is

$$
L(x, y)=f(0,0)+f_{x}(0,0)(x-0)+f_{y}(0,0)(y-0)=x-y
$$

For the differentiability of f at $(0,0)$ we need to study the limit of

$$
\frac{f(x, y)-L(x, y)}{\|(x, y)\|}
$$

for $(x, y) \rightarrow(0,0)$. For $(x, y) \neq(0,0)$ we have

$$
\frac{f(x, y)-L(x, y)}{\|(x, y)\|}=\frac{\frac{x^{3}-y^{3}}{x^{2}+y^{2}}-(x-y)}{\left(x^{2}+y^{2}\right)^{1 / 2}}=\frac{x^{3}-y^{3}-(x-y)\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3 / 2}}
$$

Using polar coordinates we get for $r>0$,

$$
\begin{aligned}
\frac{x^{3}-y^{3}-(x-y)\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{1 / 2}} & =\frac{r^{3} \cos ^{3} \theta-r^{3} \sin ^{3} \theta-(r \cos \theta-r \sin \theta)\left(r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta\right)}{\left(r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta\right)^{3 / 2}} \\
& =\cos ^{3} \theta-\sin ^{3} \theta-(\cos \theta-\sin \theta)
\end{aligned}
$$

which for $\theta=\pi / 4$ gives $\left(\frac{1}{\sqrt{2}}\right)^{3}-\left(\frac{1}{\sqrt{2}}\right)^{3}-\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)=0$ and for $\theta=-\pi / 4$ gives $\left(\frac{1}{\sqrt{2}}\right)^{3}+\left(\frac{1}{\sqrt{2}}\right)^{3}-\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)=-\frac{1}{\sqrt{2}}$ and hence has no limit for $r \rightarrow 0$.
We conclude that f is not differentiable at $(0,0)$.
2. (a) The tangent vector

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =-3 \cos ^{2} t \sin t \mathbf{i}+3 \sin ^{2} t \cos t \mathbf{j}+(-2 \cos t \sin t-2 \sin t \cos t) \mathbf{k} \\
& =-3 \cos ^{2} t \sin t \mathbf{i}+3 \sin ^{2} t \cos t \mathbf{j}-4 \cos t \sin t \mathbf{k}
\end{aligned}
$$

has length

$$
\begin{aligned}
\left\|\mathbf{r}^{\prime}(t)\right\| & =\left(9 \cos ^{4} t \sin ^{2} t+9 \sin ^{4} t \cos ^{2} t+16 \cos ^{2} t \sin ^{2} t\right)^{1 / 2} \\
& =\left(\cos ^{2} t \sin ^{2} t\left(9\left(\cos ^{2} t+\sin ^{2} t\right)+16\right)^{1 / 2}\right. \\
& =\cos t \sin t(25)^{1 / 2}=5 \cos t \sin t
\end{aligned}
$$

where we used that $\cos t$ and $\sin t$ are non-negative for $t \in[0, \pi / 2]$. The arc length is hence
$s(t)=\int_{0}^{t}\left\|\mathbf{r}^{\prime}(\tau)\right\| \mathrm{d} \tau=5 \int_{0}^{t} \cos \tau \sin \tau \mathrm{~d} \tau=\left.\frac{5}{2} \sin ^{2}(\tau)\right|_{\tau=0} ^{\tau=t}=\frac{5}{2} \sin ^{2} t=\frac{5}{2}\left(1-\cos ^{2} t\right)$.
So $\sin ^{2} t=\frac{2}{5} s$ and $\cos ^{2}=1-\frac{2}{5} s$. The parametrization by arc length is thus given by

$$
\tilde{\mathbf{r}}(s)=\mathbf{r}(t(s))=\left(\left(1-\frac{2}{5} s\right)^{3 / 2} \mathbf{i}+\left(\frac{2}{5} s\right)^{3 / 2} \mathbf{j}+\left(1-\frac{4}{5} s\right) \mathbf{k}\right.
$$

with $s \in[s(0), s(\pi / 2)]=[0,5 / 2]$.
(b) The unit tangent vector at the point $\tilde{\mathbf{r}}(s), s \in[0,5 / 2]$, is given by

$$
\mathbf{T}(s)=\frac{\mathrm{d} \tilde{\mathbf{r}}(s)}{\mathrm{d} s}=-\frac{3}{5}\left(1-\frac{2}{5} s\right)^{1 / 2} \mathbf{i}+\frac{3}{5}\left(\frac{2}{5} s\right)^{1 / 2} \mathbf{j}-\frac{4}{5} \mathbf{k}
$$

which agrees with

$$
\begin{align*}
\frac{1}{\left\|\mathbf{r}^{\prime}(t)\right\|} \mathbf{r}^{\prime}(t) & =\frac{1}{5 \cos t \sin t}\left(-3 \cos ^{2} t \sin t \mathbf{i}+3 \sin ^{2} t \cos t \mathbf{j}-4 \cos t \sin t \mathbf{k}\right) \\
& =-\frac{3}{5} \cos t \mathbf{i}+\frac{3}{5} \sin t \mathbf{j}-\frac{4}{5} \mathbf{k} \tag{1}
\end{align*}
$$

when substituting $\sin ^{2} t=\frac{2}{5} s$ and $\cos ^{2}=1-\frac{2}{5} s$.
(c) The curvature at the point $\tilde{\mathbf{r}}(s), s \in[0,5 / 2]$, is given by

$$
\begin{aligned}
\kappa(s) & =\left\|\frac{\mathrm{d} \mathbf{T}(s)}{\mathrm{d} s}\right\|=\left\|\frac{\mathrm{d}}{\mathrm{~d} s}\left(-\frac{3}{5}\left(1-\frac{2}{5} s\right)^{1 / 2} \mathbf{i}+\frac{3}{5}\left(\frac{2}{5} s\right)^{1 / 2} \mathbf{j}-\frac{4}{5} \mathbf{k}\right)\right\| \\
& =\left\|-\frac{3}{5}\left(-\frac{2}{5}\right) \frac{1}{2}\left(1-\frac{2}{5} s\right)^{-1 / 2} \mathbf{i}+\frac{3}{5} \frac{2}{5} \frac{1}{2}\left(\frac{2}{5} s\right)^{-1 / 2} \mathbf{j}+0 \mathbf{k}\right\| \\
& =\frac{3}{25}\left(\left(1-\frac{2}{5} s\right)^{-1}+\left(\frac{2}{5} s\right)^{-1}\right)^{1 / 2} \\
& =\cdots \\
& =\frac{3}{5}\left(\frac{1}{10 s-4 s^{2}}\right)^{1 / 2}
\end{aligned}
$$

Differentiating (1) with respect to t and dividing by $\left\|\mathbf{r}^{\prime}(t)\right\|$ which by the chain rule corresponds to differentiating with s gives

$$
\frac{1}{5 \cos t \sin t}\left(\frac{9}{25} \sin ^{2} t+\frac{9}{25} \cos ^{2} t\right)^{1 / 2}=\frac{3}{25 \cos t \sin t}
$$

which agrees with the κ above when substituting $\sin ^{2} t=\frac{2}{5} s$ and $\cos ^{2}=1-\frac{2}{5} s$.
3. (a) Let $F(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$. Then the ellipsoid S is given by the equation $F(x, y, z)=6$. The gradient of F is $\nabla F(x, y, z)=2 x \mathbf{i}+4 y \mathbf{j}+6 z \mathbf{k}$ and is normal to S at $(x, y, z) \in S$. The tangent plane at $\left(x_{0}, y_{0}, z_{0}\right) \in S$ is given by the equation

$$
\nabla F\left(x_{0}, y_{0}, z_{0}\right) \cdot\left(\left(x-x_{0}\right) \mathbf{i}+\left(y-y_{0}\right) \mathbf{j}+\left(z-z_{0}\right) \mathbf{k}\right)=0
$$

i.e.

$$
2 x_{0}\left(x-x_{0}\right)+4 y_{0}\left(y-y_{0}\right)+6 z_{0}\left(z-z_{0}\right)=0 .
$$

For $\left(x_{0}, y_{0}, z_{0}\right)=(1,1,1)$ this gives

$$
\begin{equation*}
x+2 y+3 z=6 \tag{2}
\end{equation*}
$$

(b) For F in part (a), we have

$$
\frac{\partial F}{\partial z}\left(x_{0}, y_{0}, z_{0}\right)=6 z_{0}=6 \neq 0
$$

By the Implicit Function Theorem S is near $\left(x_{0}, y_{0}, z_{0}\right)=(1,1,1)$ locally the graph of a function $f:(x, y) \mapsto z=f(x, y)$. The implicit function f has partial derivatives at $\left(x_{0}, y_{0}\right)=(1,1)$ given by

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=-\frac{\frac{\partial F}{\partial x}\left(x_{0}, y_{0}, z_{0}\right)}{\frac{\partial F}{\partial z}\left(x_{0}, y_{0}, z_{0}\right)}=-\frac{2 x_{0}}{6 z_{0}}=-\frac{1}{3}
$$

and

$$
\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=-\frac{\frac{\partial F}{\partial y}\left(x_{0}, y_{0}, z_{0}\right)}{\frac{\partial F}{\partial z}\left(x_{0}, y_{0}, z_{0}\right)}=-\frac{4 y_{0}}{6 z_{0}}=-\frac{2}{3}
$$

The linearization of f at $\left(x_{0}, y_{0}\right)=(1,1)$ is given by

$$
\begin{aligned}
L(x, y) & =f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1) \\
& =1-\frac{1}{3}(x-1)-\frac{2}{3}(y-1) \\
& =2-\frac{1}{3} x-\frac{2}{3} y .
\end{aligned}
$$

The graph of L is given by the equation $L(x, y)=z$ which agrees with (2).
(c) Let $F(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$ and $g(x, y, z)=x y^{2} z^{3}$. A point (x, y, z) being a critical point of g restricted to the ellipsoid $F(x, y, z)=6$ is equivalent to the existence of a Lagrange multiplier $\lambda \in \mathbb{R}$ such that $\lambda \nabla F(x, y, z)=\nabla g(x, y, z)$. Together with the constraint $F(x, y, z)=6$ this gives the following four scalar equations:

$$
\begin{aligned}
\lambda F_{x}(x, y, z) & =g_{x}(x, y, z), \\
\lambda F_{y}(x, y, z) & =g_{y}(x, y, z) \\
\lambda F_{z}(x, y, z) & =g_{z}(x, y, z), \\
x^{2}+2 y^{2}+3 z^{2} & =6
\end{aligned}
$$

i.e.

$$
\begin{align*}
2 \lambda x & =y^{2} z^{3}, \\
4 \lambda y & =2 x y z^{3}, \\
6 \lambda z & =3 x y^{2} z^{2}, \tag{3}\\
x^{2}+2 y^{2}+3 z^{2} & =6 .
\end{align*}
$$

For $x=0, y=0$ or $z=0$, we have $g(x, y, z)=0$. On the other hand $g(1,1,1)=$ $1>0$ and $g(-1,1,1)=-1<0$. So the maxima and minima cannot have $x=0$, $y=0$ or $z=0$ and we can exclude such points from the solutions of (3). Then the first three equations of (3) yield

$$
\frac{y^{2} z^{3}}{x}=x z^{3}=x y^{2} z
$$

Hence $y=x^{2}$ and $z^{2}=y^{2}=x^{2}$. Filling this into $F(x, y, z)=6$ gives $x^{2}+2 x^{2}+$ $3 x^{2}=6 x^{2}=6$, i.e. $x^{2}=1$ and similarly $y^{2}=z^{2}=1$. For $(x, y, z)=(1, \pm 1,1)$ and $(x, y, z)=(-1, \pm 1,-1), g(x, y, z)=1$ and for $(x, y, z)=(-1, \pm 1,1)$ and $(x, y, z)=(1, \pm 1,-1), g(x, y, z)=-1$. By the Weierstrass Extreme Value Theorem these points are thus maxima and minima, respectively.
4. We first evaluate the left side of the equation. The boundary ∂D is piecewise smooth and consists of the smooth pieces parametrized by

$$
\mathbf{r}(t)=(2 \cos t, 2 \sin t)=:(x(t), y(t)), \quad t \in[0, \pi]
$$

and

$$
\tilde{\mathbf{r}}(t)=(t, 0)=:(\tilde{x}(t), \tilde{y}(t)), \quad t \in[-2,2],
$$

respectively. Hence

$$
\begin{aligned}
\oint_{\partial D} P \mathrm{~d} x+Q \mathrm{~d} y= & \int_{0}^{\pi} F(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t+\int_{-2}^{2} F(\tilde{\mathbf{r}}(t)) \cdot \tilde{\mathbf{r}}^{\prime}(t) \mathrm{d} t \\
= & \int_{0}^{\pi}\left(P(\mathbf{r}(t)) x^{\prime}(t)+Q(\mathbf{r}(t)) y^{\prime}(t)\right) \mathrm{d} t \\
& \quad+\int_{-2}^{2}\left(P(\tilde{\mathbf{r}}(t)) \tilde{x}^{\prime}(t)+Q(\tilde{\mathbf{r}}(t)) \tilde{y}^{\prime}(t)\right) \mathrm{d} t \\
= & \int_{0}^{\pi}(2 \cdot 2 \sin t \cdot(-2 \sin t)+2 \cos t 2 \cos t) \mathrm{d} t \\
& +\int_{-2}^{2}(0 \cdot 1+t \cdot 0) \mathrm{d} t \\
= & \int_{0}^{\pi}\left(-8 \sin ^{2} t+4 \cos ^{2} t\right) \mathrm{d} t \\
= & \int_{0}^{\pi}\left(-8+8 \cos ^{2} t+4 \cos ^{2} t\right) \mathrm{d} t \\
= & \int_{0}^{\pi}\left(12 \cos ^{2} t-8\right) \mathrm{d} t \\
= & \frac{12}{2}(\cos t \sin t+t)-\left.8 t\right|_{t=0} ^{t=\pi} \\
= & -\left.2 t\right|_{t=0} ^{t=\pi} \\
= & -2 \pi
\end{aligned}
$$

For the right side of the equality we have

$$
\begin{aligned}
\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A & =\iint_{D}(1-2) \mathrm{d} A \\
& =- \text { area of } D \\
& =-\frac{1}{2} \pi 2^{2} \\
& =-2 \pi
\end{aligned}
$$

which agrees with the left side of the equality.

