Midterm Exam Calculus 2 university of
il :
18 March 2021, 9:00-11:00 %g groningen

The midterm exam consists of 4 problems. You have 120 minutes to answer
the questions. In addition you have 15 minutes to scan and upload your
solutions to Nestor. Upload your solutions in a single file. For the filename,
use the format Lastname _Studentnumber_Midterm. You can achieve 100 points

which includes a bonus of 10 points.

1. [5+5+10=20 Points|
Let f: R? — R be defined as

_ [ =% i (oy) #(0,0)

(a) Is f continuous at (z,y) = (0,0)? Justify your answer.
(b) Let w = vi+ wj € R? be a unit vector, i.e. v? + w? = 1. Determine the
directional derivative D, f(0,0).
(c) Use the definition of differentiability to determine whether f is differentiable at
0,0).
2. [10+5+10=25 Points]
Consider the curve parametrized by r : [0, 7/2] — R? with

r(t) = cos’ ti+sin®tj+ (cos’t — sin®t) k.

(a) Determine the parametrization by arc length. You may use that %sith =

—% cos’t = 2sint cost.

(b) For each point on the curve, determine a unit tangent vector.

(c) At each point on the curve, determine the curvature of the curve.

— please turn over —



3. [64+104-10=25 Points]
Let S be the ellipsoid in R? defined by 22 + 2y% + 322 = 6.

(a) Compute the tangent plane of S at the point (z¢,yo, 20) = (1,1, 1).

(b) Use the Implicit Function Theorem to show that near the point (o, o, 20) =
(1,1,1), the ellipsoid S can be considered to be the graph of a function f of x
and y. Compute the partial derivatives of f with respect to x and y and show
that the tangent plane found in (a) coincides with the graph of the linearization

of f at (xo,90) = (1,1).
(c¢) Use the method of Lagrange multipliers to determine the points on S where
g(z,y, 2) = xy*2® has maxima and minima, respectively.
4. [20 Points]

Let D = {(z,y) € R?|z> + y?> < 4, y > 0} and 9D be the boundary of D oriented
in the counterclockwise direction. For the vector field F : R? — R? (z,y) —
P(z,y)i+ Q(x,y)j with P(z,y) = 2y and Q(z,y) = z, verify

e [l (5 -5)

by computing both sides of the equality. You may use that [cos?®tdt = (¢ +
sintcost) and [sin®tdt = 1(t —sint cost).



Solutions

1. (a) Using polar coordiantes (x,y) = (rcos@,rsinf) we get for r > 0,

73 cos® § — 3 sin® 0
72 cos? 0 + r2sin® 0
which goes to 0 = f(0,0) for r — 0. Hence f is continuous at (0, 0).

(b) By definition

f(rcos@,rsinf) = = r(cos® § — sin® )

Duf(0,0) = 1im L0 =7(0.0)

(c¢) Choosing u = (1,0) in part (b) we get f,(0,0) = 1 and similarly choosing
u = (0,1) we get f,(0,0) = —1. The linearization of f at (0,0) hence is

L(z,y) = f(0,0) + f(0,0)(z — 0) + f,(0,0)(y — 0) = = — y.
For the differentiability of f at (0,0) we need to study the limit of

f(l', y) — L(:L',y)
1z, )
for (x,y) — (0,0). For (z,y) # (0,0) we have

Il @+ (22 + )%

Using polar coordinates we get for r > 0,

fay) = Lizy)  Sib——y) o=~ (r—y)a®+ v')

=y — (v —y)(a® +y?) r3 cos® ) — r3sin 9—(7‘0059—7"51119)(7“ cos? § + r?sin” 6)

(22 + y2)1/2 (12 cos? § + r2sin? §)3/2
= cos’f —sin® 0 — (cos — sin )

which for 6 = 7 /4 gives (\%)3 — <\/i§>3 (\f f) =0 and for § = —7/4

3 3
gives (\%) + (\%) — <\/i§ + %) = —75 and hence has no limit for » — 0.
We conclude that f is not differentiable at (0,0).

2. (a) The tangent vector

r'(t) = —3cos’tsinti+ 3sin®tcostj+ (—2costsint — 2sintcost)k
= —3cos’tsinti+ 3sin’tcostj—4costsintk
has length
I¥'(®)|| = (9cos tsin*t + 9sin* t cos® ¢ + 16 cos® ¢ sin® t)1/2

= (cos®tsin®t(9(cos® t + sin’t) + 16) 2
= costsint (25)1/2 = Hcostsint,



(c)

where we used that cost and sint are non-negative for ¢ € [0,7/2]. The arc
length is hence

t t
5 = 5 . 5
s(t) = / |t/ (7)]| dT = 5/ cos 7sinTdr = = sin*(7)| _g = —sin’t = —(1—cos’t).
0 0 2 = 2 2
So sin?t = %5 and cos® = 1 — %s. The parametrization by arc length is thus

given by
2 2 4
£(s) = £(1() = (1 - 29)i+ (C9)*2) + (1~ 39k
with s € [s(0), s(w/2)] = [0,5/2].
The unit tangent vector at the point ¥(s), s € [0,5/2], is given by

di(s) 3 2 \"* . 3 /2\V 4
T(s) = = 2(1-2 P (- i— -k
(5) = =4 5( 5S> 'T5\5°) 175

which agrees with

1 1
TOIRR

=_———— (—3cos’tsinti+ 3sin*tcostj— 4costsintk)
Scostsint

3 3 4
:—gcosti—i—gsintj—gk (1)

when substituting sin®t = %s and cos? = 1 — %s.

The curvature at the point 1(s), s € [0,5/2], is given by

dT(s) d({ 3 2\, 3/2\", 14
(s) ds ‘ ds< 5( 53) 75 5°) 175
3/ 2\1 2\ * 391 -1/
S Y T (i 222 (2 10k
5( 5)2( 5S> 552<5S> It

3 1 1/2
5 (103—432) ‘

Differentiating (1) with respect to ¢ and dividing by ||r’(¢)|| which by the chain
rule corresponds to differentiating with s gives

1 9 i ot 12 3
—— | —sin — COS =
Scostsint \ 25 25 25costsint

which agrees with the x above when substituting sin®¢ = %s and cos? = 1 — %5.

Let F(x,y,z) = 2? + 2y* + 32%. Then the ellipsoid S is given by the equation
F(z,y,z) = 6. The gradient of F' is VF(x,y,z) = 2xi+ 4yj + 6zk and is
normal to S at (z,y,z) € S. The tangent plane at (zo,yo, 20) € S is given by
the equation

VE(x0,Y0,20) - ((x —20) i+ (y —y0)j+ (2 — 20) k) =0



le.
2xo(z — 20) + 4Yo(y — yo) + 620(z — 20) = 0.
For (xg, Yo, 20) = (1,1,1) this gives

T+ 2y + 32 =6.

For F' in part (a), we have

oF
0z
By the Implicit Function Theorem S is near (zg,¥o,20) = (1,1,1) locally the

graph of a function f : (z,y) — 2z = f(z,y). The implicit function f has partial
derivatives at (zo,40) = (1,1) given by

(ﬁojyoazo) =62=6#0.

g(a: wo) = ?95(9607%,20) _ 2w 1
O oo %Z(x()’yOaZO) 6’20 3
and oF
(9f< ) = @(55079072’0) _4yo 2
—=(20,y e = =z
oy %—F(xoaymzo) 620 3
The linearization of f at (zg,y0) = (1, 1) is given by
L(z,y) = f(L1)+ fa(1, 1)(513 D+ 5,00y - 1)
1
- 1——(z—1
w2
5 1 2
= 2—-x—-y.
37 37

The graph of L is given by the equation L(z,y) = z which agrees with (2).

Let F(z,y,2) = 2% + 2y* + 32% and g(z,y,2) = zy*2®. A point (z,y, ) being a
critical point of g restricted to the ellipsoid F(z,y,2) = 6 is equivalent to the
existence of a Lagrange multiplier A € R such that A\VF(x,y, z) = Vg(z,v, 2).
Together with the constraint F'(x,y,z) = 6 this gives the following four scalar
equations:

AFy(z,y,2) = gulz,y,2),

AFy(2,y,2) = gy(x,y,2),

)\Fz(x,y,z) = gz(xayaz)v

2427 +322 = 6
ie.
22 = %23,
4y = 2y,
6 2z = 3axy’? (3)
4+ 2y* 4+ 322 = 6.

For z =0,y =0 or z = 0, we have g(x,y, z) = 0. On the other hand ¢g(1,1,1) =
1>0and g(—1,1,1) = —1 < 0. So the maxima and minima cannot have z = 0,
y =0 or z =0 and we can exclude such points from the solutions of (3). Then
the first three equations of (3) yield

2.3
Yy z 3 2
— =uxz’ =xy°z.
T



Hence y = 22 and 2? = y? = 2. Filling this into F(z,y, z) = 6 gives 2% + 2% +
3z% = 622 = 6, i.e. > =1 and similarly y* = 2% = 1. For (z,y,2) = (1,£1,1)
and (z,y,z) = (—1,£1,-1), g(z,y,2) = 1 and for (z,y,2) = (—1,£1,1) and
(x,y,2) = (1,£1,-1), g(z,y,2z) = —1. By the Weierstrass Extreme Value The-
orem these points are thus maxima and minima, respectively.

4. We first evaluate the left side of the equation. The boundary 0D is piecewise smooth
and consists of the smooth pieces parametrized by

r(t) = (2cost,2sint) =: (z(t),y(t)), te€0,n]

and

respectively. Hence

ygDdeJery - /OWF(r(t))m/(t)dtJr FE®) - #(8) dt

= / (2-2sint - (—2sint) + 2cost2cost) dt
0

2
+/ (0-14¢-0) dt
—2
= / (—8Sin2t+4C082t) dt
0
— / (—8+80082t+4(3082t) dt
0

= / (12cos2t—8) dt
0

12 : e
= —(costsint +t) — 8t
2 t=0
~2t 25
= —27.

For the right side of the equality we have

//D(%—g—];) dA = //D(l—Q)dA

= —areaof D

1
= —571'22

= 27

which agrees with the left side of the equality.



